
High-Performance Graph

Analytics Accelerator

Long Zheng, Pengcheng Yao

Huazhong University of Science & Technology

 Introduction of Graph Analytics
 Background of Graph Analytics

 The importance of Graph Analytics

 Why we need Graph accelerator

 Introduction of our work
 Performance analysis

 Computation Architecture Designs

 Memory System Designs

 Conclusion

Outline

2

 Origin: Seven Bridges of Königsberg

What is Graph?

How to walk

cross each

bridge once

and only once?

3

What is Graph?

4

 Origin: Seven Bridges of Königsberg

 Graph: describing the relationships (edges) between different entities

(vertices) with high flexibility and accuracy

 Rest Area -> Vertex, Bridge -> Edge

 An undirected graph with four vertices and seven edges

1

2

3

4

VertexEdge

Graph

1 Vertex Edge

What is Graph?

5

Graph is ubiquitous!

World Wide Web Social Networks

Traffic Networks Biology

What is Graph Analytics?

 Graph processing

 Computing vertex/edge properties to analyze graph property, e.g., BFS,

SSSP, PageRank

 Gather-Apply-Scatter: iterative computation based on neighbors

6

Each vertex in the input
graph iteratively updates
itself based on the
properties of its neighbors

 Graph analytics: solving real-world problems by analyzing graphs

What is Graph Analytics?

 Graph processing

 Computing vertex/edge properties to analyze graph property, e.g., BFS,

SSSP, PageRank

 Gather-Apply-Scatter: iterative computation based on neighbors

 Widely adopted to analyze relationships

7

Model how people interact
and influence each other to
predict COVID-19 outbreaks

 Graph analytics: solving real-world problems by analyzing graphs

What is Graph Analytics?

 Graph mining

 Searching interesting graph patterns to analyze graph structure, e.g.,

subgraph matching, motif counting

 Extend-Filter-Process: iterative extension based on neighbors

8

Each subgraph in the
input graph iteratively
extends itself based on
the edges of its neighbors

 Graph analytics: solving real-world problems by analyzing graphs

What is Graph Analytics?

 Graph mining

 Searching interesting graph patterns to analyze graph structure, e.g.,

subgraph matching, motif counting

 Extend-Filter-Process: iterative extension based on neighbors

 Widely used in social network, finance, and biology

9

 Graph analytics: solving real-world problems by analyzing graphs

Detecting suspicious account
by searching specific cash flow

Why We Need Graph Analytics?

NLP Image Processing Autopilot IOT

ASIC Designs NeuroscienceEDA Tools

We are in a golden age of AI:

Machine Learning (ML) technologies are ubiquitous in our life

Why we need to research graph analytics (GA), which seems to

be out of date？

10

Why We Need Graph Analytics?

 Reason: the need of processing sparse data in real-world applications

 Both of ML and GA can be abstracted as matrix computation

 ML: Dense matrix computation, where most of the elements are nonzero

(e.g., 100% in DNN)

 GA: Sparse matrix computation, where most of the elements are zero (e.g.,

99.9999997% in Twitter Graph)

11

W: Dense
weight matrix

W: Sparse
weight matrix

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Car

Not Car

Match

Not Match

Input

Machine Learning

Output

Input Output

Graph Analytics

10

11

12

10

11

12

w14 w15 w16

w24 w25 w26

w34 w35 w36

w14 0 0

0 w25 0

0 w25 w36

4 5 6

1

2

3

1

2

3

4 5 6

：

：

Why We Need Graph Analytics?

 ML and GA are adopted in different areas
 ML: a representative of regular applications which process dense data

 GA: a representative of irregular applications which process sparse data

 Both of them are necessary for solving real-world problems

Graph AnalyticsMachine Learning

NLP Image Processing

Autopilot Speech Recognition

Social Network Analysis

RDF Database

12

Why We Need Graph Analytics?

 Researches on sparsity are increasingly important
 Sparsity is ubiquitous in our life

 Even typical dense applications might have some kind of sparsity

 Most of existing SWs and HWs are designed for dense data

 Efficient processing technologies for sparse data are essential

We only interact with a

limited number of items

Existing SWs & HWs are

designed for dense data

Sparsity

is ubiquitous

Sparsity also exists in

dense applications

Efficient processing

technologies are missing

ML also has sparsity

（Sparse NN, GNN）

13

Why We Need Graph Accelerators?

 Sparsity in graph data causes significant irregularity

 Sparse data leads to irregular computations and memory accesses

 General-purpose processors (e.g., CPU, GPU) are designed to efficiently

process dense data

 Sparse data cases significant data contentions and random accesses

Shared Cache

Pipeline

Private

Caches

Private

Caches

Pipeline…

Main Memory

64B Granularity

Irregularity is inefficient on general-

purpose architecture

②

①

① Data contention on the same irregular data

②Mismatched access granularity

14

Sparsity leads to

irregular computation

 ML: dense data process is regular and sequential

 GA: sparse data process is irregular and random

Machine Learning Graph Analytics

 Introduction of Graph Analytics
 Background of Graph Analytics

 The importance of Graph Analytics

 Why we need Graph accelerator

 Introduction of our work
 Performance analysis

 Computation Architecture Designs

 Memory System Designs

 Conclusion

Outline

15

Our Objective

16

16

Building A General-Purpose Graph

Analytics Computer

Our Work in Accelerator Designs

17

Hardware

Software

Performance Analysis for Graph analytics

Non-atomic

Design

Computation Architecture

High-throughput

pipeline
High-performance

Scheduling

2

Hybrid

Hierarchy

Memory Subsystem

Locality-aware

Replacement

Memory-efficient

management

1

3

1 Towards Dataflow-based

Graph accelerator

(ICDCS’17)

2 An Efficient Graph

Accelerator with Parallel

Data Conflict Management

(PACT’18)

3 A Locality-Aware Energy-

Efficient Accelerator for

Graph Mining Applications

(MICRO’20)

Performance Analysis — ICDCS’17

 Understanding the Performance bottlenecks

 Existing work believes that graph analytics is bottlenecked by memory

accesses

 We find that most (i.e., 41%) of the CPU cycles are stalled on memory

accesses

 There are still 35% of the CPU cycles are stalled on core execution

18

Performance Analysis — ICDCS’17

19

Graph: 0.867

SPEC: 1.55

Average

IPC is

only 0.87

ILP is 0 or 1 in

62% CPU

cycles for

Graph Analytics

ILP is 0 or 1 in 33%

CPU cycles for

SPEC2006

Performance Analysis — ICDCS’17

50.3

mul

add

sub

load

div

mul

div

load

add

sub

mul

add

sub

load

div

 Limitation of Out-of-Order Execution

 Out-of-order execution, but sequential retirement

 When facing a long latency instruction, OOO buffers can soon be clogged by

succeeding instructions that are already executed

 OOO buffers account for 50.3% of the total resource-related stalls

 Long latency instructions in graph analytics

 Computation: atomic operations; Memory: random vertex/edge accesses

20

More details in “Towards Dataflow-based Graph accelerator”

~ ~ ~

Input

Process

Output

 Inefficiencies of atomic operations in graph analytics

 Sparsity cause irregular computations, which lead to data contention

Computation Architecture — PACT’18

21

Every data is only accessed by one pipeline in each cycle

Original

workloads
Partitioned

workloads

…

Parallel

Process
Hardware

Support

Typical NN

accelerator

~

~

~

Input Process Output

Regular Applications

 Inefficiencies of atomic operations in graph analytics

 Sparsity cause irregular computations, which lead to data contention

 To ensure the correctness of results, existing work uses atomic operations to

serialize the process of conflict data

Computation Architecture — PACT’18

22

Input

Parallel

Process

~ ~ ~

Input

Process

Output

~

Hardware

Support

Original

workloads
Partitioned

workloads

Typical graph

accelerator

Graph Analytics

Every data might be simultaneously accessed by multiple pipelines

 Inefficiencies of atomic operations in graph analytics

 Sparsity cause irregular computations, which lead to data contention

 To ensure the correctness of results, existing work uses atomic operations to

sequentially access the conflict data

 Overheads of atomic operations: 45%

3 2

2 1

1

3

A
to

m
ic

S
tru

c
tu

re4

2

s s

4

1 s PE1

PE2

PE3

PE4

The process of vertex 1 is blocked

1

1

13

4

1

3 2 1 s

4 2 1 s s

2 1 s s s

Computation Architecture — PACT’18

23

Whether we can parallelize the process of conflict data while ensuring

the accuracy of results?

 Characteristics of graph atomic

operations: following commutative

law and associative law

 Insight: Parallel accumulation

Computation Architecture — PACT’18

 Insight: accumulating the

atomic operations in parallel

before writing back the results

24

A
c
c
u

m
u

la
to

r
23 1

3 2

2

4

34

1

3

33 133

4

PE1

PE2

PE3

PE3

The insight sounds to be promising, but not easy to be efficiently

implemented

 Challenge: Irregular vertex degrees

Computation Architecture — PACT’18

 Different vertex has different number of degrees (i.e., the data received in each

cycle belongs to multiple vertices)

 Traditional adder tree can only accumulate for one vertex, leading to

suboptimal performance

 Using multiple adder trees is kind of a cop-out. It works, but significantly

increases hardware fanouts

25

A
d

d
e

r T
re

e

3 1

3 2

2

4

34

1

3

33

3

3 2

23

3

33

F
IF

O

PE1

PE2

PE3

PE3

4

4

334 2

1

1 1

Traditional accumulator

(adder tree)

Suboptimal performance of adder tree

Consumes two more cycles

 Problem Formulization

 Original (integer programming)：

 Characteristic

 partial order in pull model, i.e., all requests are sent in an ascending

order of destination vertex

 bij ≤ bkj, if i ≤ k

 Simplified (Prefix Sum):

 Differences between traditional prefix sum and our problem

 Breakpoint

 f(i) is initialized to ai when a break point c1
m appears

 Accumulator needs to find all dynamically changing c1
m

 Filter:

 Only f(c2
j) is the valid results, where c2

j also dynamically changes

 Accumulator needs to precisely select the accumulated results

Computation Architecture — PACT’18

26

 Methodology

 Optimize traditional prefix sum

adders to mitigate the gaps

 We choose Ladner-Fischer

adders for minimized latency and

resources

 Partial order in c1
m (c

1
i ≤ c1

j if i ≤ j)

 Adding log(|Pipeline|) bits to

each update as vertex ID

 c1
m can be generated in runtime

by comparing the vertex ID of

consecutive updates

Computation Architecture — PACT’18

27

Computation Architecture — PACT’18

28

 Hardware Designs

 Breakpoint recognition: replacing original adder logic with the conditional

adding logic

 Data filtering: select the accumulated results in the location of each vertex’s last

update

𝑤ℎ𝑖𝑡𝑒 𝑔𝑟𝑖𝑑 : 𝑜𝑢𝑡 = 𝑖𝑛

𝑔𝑟𝑎𝑦 𝑔𝑟𝑖𝑑 : 𝑜𝑢𝑡 = ቊ
𝑖𝑛1 + 𝑖𝑛2 (𝑖𝑑1 == 𝑖𝑑2)

𝑖𝑛2 (𝑖𝑑1 ! = 𝑖𝑑2)

𝑑𝑎𝑡𝑎[𝑖] = 𝑅𝑒𝑠𝑢𝑙𝑡𝑠[𝑜𝑓𝑓𝑠𝑒𝑡[𝑖] % 𝑁]

Computation Architecture — PACT’18

 Example
 Fully pipelined accumulation

 Accumulator receives 8 updates in the 1st cycle

 Adder directly sends the second data when finding a breakpoint in the 2nd

and 3rd cycle

 Because the location of the last updates of vertex 1 is 3, accumulator select

the data in the 3rd port as the results for vertex 1

29

Computation Architecture — PACT’18

Performance

 Evaluation

 Platform: Xilinx U250 Acceleration card, use 2 channel memory only

 Performance (170MHz ~ 250MHz):

1.23 - 1.86 GTEPs (Overall) or 3.69 – 5.58 GTEPs (Single Iteration) for BFS

3.22 - 3.98 GTEPs for PageRank

 Normalized Speedup: 3.6-6.2x speedup comparing to state-of-the-art

 3.96x speedups for finance anti-fraud applications from Ping An Technology

Speedup

30

More details in “An Efficient Graph Accelerator with Parallel Data Conflict Management ”

Memory Subsystem — MICRO’20

 Memory Access Characteristics

 Graph processing: random vertex access

 Graph Mining: random vertex and edge access

 Existing accelerators statically hold all vertex data on-chip

 While this mechanism is efficient for graph processing, it is not practical to

hold all edge data for graph mining with limited on-chip memory capacity

31

 An intuition is whether we

can achieve considerable

performance by storing

only a small portion of

data?

 Exploration locality: the

power-law distribution in

natural graphs is amplified

during the process. 5%

data can generate at

most 95% memory

accesses

 Insight: Exploration Locality

Memory Subsystem — MICRO’20

32

Memory Subsystem — MICRO’20

 Methodology: Divide-and-Conquer

 Statically retaining frequently accessed data, and dynamically replacing

the left

 Challenge

 Frequency calculation: hard to precisely locate the frequently accessed data

 Intermediate results: hard to be stored in off-chip memory

33

Memory Subsystem — MICRO’20

 Hardware Design

 Memory hierarchy: static memory (scratchpad memory) + dynamic memory

(cache)

 Observation: access frequency of a vertex is mainly determined by the degrees

of itself and its 1-hop neighbors

 Data addressing: predict access frequency with high accuracy and low overheads

 Replacement policy: Locality-aware replacement

34

Memory Subsystem — MICRO’20

 Hardware Design

 DFS-based architecture:

extending the subgraphs in DFS

manner to avoid writing back

intermediate results

 Slot-based pipeline: efficiently

process different subgraphs in

parallel in a dataflow manner

 Data compression: compacting

the parameters of DFS traverse

 Load-balance: aggressive and

precise work-stealing mechanism

35

Memory Subsystem — MICRO’20

Performance

 Evaluation
 Platform: Xilinx U250 FPGA acceleration card

 Performance: ≥ 2.4x speedups comparing to state-of-the-art Fractal

 Energy efficiency: ≥ 33.6x comparing to state-of-the-art Fractal

Energy Efficiency

36

More details in “A Locality-Aware Energy-Efficient Accelerator for Graph Mining Applications”

 Introduction of Graph Analytics
 Background of Graph Analytics

 The importance of Graph Analytics

 Why we need Graph accelerator

 Introduction of our work
 Performance analysis

 Computation Architecture Designs

 Memory System Designs

 Conclusion

Outline

37

 Graph is ubiquitous in our life

 Researching graph analytics is important

 Graph processing is bottlenecked by both computation and

memory access

 Atomic operations in graph analytics can be accumulated in

parallel to avoid pipeline stalls

 Exploration locality can be leveraged to achieve consider

memory performance on large volume of graph data

Conclusion

38

END

Thanks!

39

