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What is Graph?

How to walk
cross each
bridge once
and only once?

» Origin: Seven Bridges of Kdnigsberg
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What is Graph?

» Origin: Seven Bridges of Kdnigsberg
» Graph: describing the relationships (edges) between different entities
(vertices) with high flexibility and accuracy
v" Rest Area -> Vertex, Bridge -> Edge
v" An undirected graph with four vertices and seven edges
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What is Graph?
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Social Networks
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Traffic Networks Biology

Graph is ubiquitous!
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What is Graph Analytics?

» Graph analytics: solving real-world problems by analyzing graphs
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v Graph processing
v' Computing vertex/edge properties to analyze graph property, e.g., BFS,

SSSP, PageRank
v' Gather-Apply-Scatter: iterative computation based on neighbors

Each vertex in the input
graph iteratively updates
itself based on the
properties of its neighbors
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What is Graph Analytics?

» Graph analytics: solving real-world problems by analyzing graphs

Model how people interact
and influence each other to
predict COVID-19 outbreaks

v Graph processing
v' Computing vertex/edge properties to analyze graph property, e.g., BFS,
SSSP, PageRank
v' Gather-Apply-Scatter: iterative computation based on neighbors

v' Widely adopted to analyze relationships
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What is Graph Analytics?

» Graph analytics: solving real-world problems by analyzing graphs

: o= .
v — ) Each subgraph in the

Input Output Input W Input Output . . .
. ‘ . . ) input graph iteratively
QO | &L 2 Drocess extends itself based on
| S ; ; S ; : the edges of its neighbors
N\ | [=="!
E ‘ ’L @ ©® i Output Save

Read Extend by adding one Filter by user- Proc_(;ss to get
Embeddings vertex or edge defined criteria output

v Graph mining
v Searching interesting graph patterns to analyze graph structure, e.g.,
subgraph matching, motif counting
v' Extend-Filter-Process: iterative extension based on neighbors
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What is Graph Analytics?

» Graph analytics: solving real-world problems by analyzing graphs

- Authorize.Net‘
, cardpoint
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Yotgjr ) Processor

Website Detecting suspicious account

s ) N by searching specific cash flow
onthly .
- il '

Bill
\ Merchant Bank o cordissuer (a.k.a. the

credit card company)
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v" Graph mining
v' Searching interesting graph patterns to analyze graph structure, e.g.,
subgraph matching, motif counting
v'  Extend-Filter-Process: iterative extension based on neighbors
v' Widely used in social network, finance, and biology
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Why We Need Graph Analytics?

e 3 6
L'e w ;
ﬂzib"proce %¥ INTERNET o
N|_p % THINGS
NLP Image Processing Autopilot IOT
We are in a golden age of Al:
Machine Learning (ML) technologies are ubiquitous in our life

(intel'

ASIC Designs EDA Tools Neuroscience

Why we need to research graph analytics (GA), which seems to
be out of date?

|
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Why We Need Graph Analytics?

Machine Learning

uf N WulWis|Wisl - \A/: Dense
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Graph Analytics
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» Reason: the need of processing sparse data in real-world applications

» Both of ML and GA can be abstracted as matrix computation

v' ML: Dense matrix computation, where most of the elements are nonzero
(e.g., 100% in DNN)

v GA: Sparse matrix computation, where most of the elements are zero (e.g.,
99.9999997% in Twitter Graph)
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Why We Need Graph Analytics?

Machine Learning
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Autopilot

Speech Recognitio

Graph Analytics
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RDF Database
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» ML and GA are adopted in different areas

v' ML: a representative of regular applications which process dense data
v' GA: a representative of irregular applications which process sparse data
v' Both of them are necessary for solving real-world problems
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Why We Need Graph Analytics?

Sparsity
IS ubiquitous
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Sparsity also exists in : Efficient processing
dense applications ; technologies are missing

CUDA

multiprocessor n

multiprocessor 1 |
multiprocessor 0

Local Shared Memory

FU FU - =

Device Memory

4

A

thread block

We only interact with a
limited number of items

1
ML also has sparsity 1 Existing SWs & HWs are
(Sparse NN, GNN) !  designed for dense data

» Researches on sparsity are increasingly important
v Sparsity is ubiquitous in our life
v' Even typical dense applications might have some kind of sparsity
v" Most of existing SWs and HWs are designed for dense data
v Efficient processing technologies for sparse data are essential
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Why We Need Graph Accelerators?

Sparsity leads to
irregular computation

o
L

Pipeline

Private

Pipeline

Private
es

Shared Cache

Machine Learning Graph Analytics
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1
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1
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» ML: dense data process is regular and sequential :
|

» GA: sparse data process is irregular and random

» Sparsity in graph data causes significant irregularity

64B Granularity

@ Mismatched access granularity

v'  Sparse data leads to irregular computations and memory accesses

v' General-purpose processors (e.g., CPU, GPU) are designed to efficiently

process dense data

v'  Sparse data cases significant data contentions and random accesses

SCLS 14

Irregularity is inefficient on general-
purpose architecture

@ Data contention on the same irregular data
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Our Objective

Building A General-Purpose Graph
Analytics Computer

PEKING UNIVERSITY
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Our Work in Accelerator Designs

Software

Performance Analysis for Graph analytics q

Hardware

Computation Architecture

Non-atomic High-throughput High-performance
Design pipeline Scheduling
Memory Subsystem
Hybrid Locality-aware Memory-efficient
Hierarchy Replacement management
17

0 Towards Dataflow-based

Graph accelerator
(ICDCS’17)

9 An Efficient Graph

Accelerator with Parallel
Data Conflict Management
(PACT’18)

® A Locality-Aware Energy-

Efficient Accelerator for
Graph Mining Applications
(MICRO’20)

N
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Performance Analysis — ICDCS’17

Prior Work Our Work

Algorithm Not Stalled | Memory Sys. | Inside Core
Breadth-First Search 25.486 38.022 36.492
PageRank 23.704 46.683 29.613
Connected Components 20.691 43.751 35.558
Triangle Counting 23.674 37.750 38.576

» Understanding the Performance bottlenecks

v

v

Existing work believes that graph analytics is bottlenecked by memory
accesses

We find that most (i.e., 41%) of the CPU cycles are stalled on memory
accesses

There are still 35% of the CPU cycles are stalled on core execution

18
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Performance Analysis — ICDCS’17
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Performance Analysis — ICDCS’17
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> Limitation of Out-of-Order Execution

v' Out-of-order execution, but sequential retirement

v" When facing a long latency instruction, OOO buffers can soon be clogged by

succeeding instructions that are already executed
v 00O buffers account for 50.3% of the total resource-related stalls

» Long latency instructions in graph analytics

_%ACL

More details in “Towards Dataflow-based Graph accelerator”
20

v' Computation: atomic operations; Memory: random vertex/edge accesses
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Computation Architecture — PACT’18

» Inefficiencies of atomic operations in graph analytics
v' Sparsity cause irregular computations, which lead to data contention

e

é/ery data is only accessed by one pipelinein ea%cls}
&)
Input  Process  Output e B I .- 29¢%2.9
Q S Q Parallel vt §d Nd N  Hardware %— - :
Process A M M) Support ]]:[I]— O
N . Lo
_’Q :> Process % é é x. ] T Pa'rﬁaISums
l A\
7 T
a : ~ :a OUtPUt Q é A %%% % > Done
Original Partitioned Typical NN
workloads workloads accelerator

Regular Applications
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Computation Architecture — PACT’18

» Inefficiencies of atomic operations in graph analytics
v' Sparsity cause irregular computations, which lead to data contention

v" To ensure the correctness of results, existing work uses atomic operations to
serialize the process of conflict data

e

@ata might be simultaneously accessed by multi@

P
—

Input %
ﬂ . assign
Hardware ™

< Support

S

9 e Parallel input (23 Q ~ﬁ

\ / Process >
-

N

~

J\:’h
& —
:> Process ~ J_l 1
/ l o g P
ﬂ O u t p u t G a ﬂ n Mtfi?‘lfts::riml L
Original Partitioned Typical graph
workloads workloads accelerator

Graph Analytics
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Computation Architecture — PACT’18

» Inefficiencies of atomic operations in graph analytics

v' Sparsity cause irregular computations, which lead to data contention
v' To ensure the correctness of results, existing work uses atomic operations to
sequentially access the conflict data
v' Overheads of atomic operations: 45%
" Ii Atomic update
m NGO E ' BEL Ets_l—]m-edgeparaum update
1 E1 g F ] o MM I P SO _ B
(LM 3 ~[T2RIEE g
AR AATZELS Sl (M (N (.

: 0.0
The process of vertex 1 is blocked LiveJournal Snad Orkut Avg
Graph Datasets

1 , Whether we can parallelize the process of conflict data while ensuring
I = theaccuracy of results?
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Computation Architecture — PACT’18

» Insight: Parallel accumulation

Algorithm Operation Type

Breadth-First Search CAS if less g
Weakly Connected Components CAS if less o)
Shortest Path CAS if less % 4 2 PE2
PageRank Atomic add gc—_, —{ | | | PE3 |
Triangle Counting Atomic add §
Degree Centrality Atomic add 4]3]2 —~L L1 M Pil
Collaborative Filtering Atomic add
v' Characteristics of graph atomic v" Insight: accumulating the
operations: following commutative atomic operations in parallel
law and associative law before writing back the results

The insight sounds to be promising, but not easy to be efficiently
implemented
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Computation Architecture — PACT’18

» Challenge: Irregular vertex degrees

L2 2N B R K 2 2 R 2R RN BN AR 2N N 2
Adder | | Adder| | Adder| | Adder| | Adder| | Adder | | Adder| | Adder Consumes two more cycles
Ly 12 (1.3} (L4 a3 (1.6) (1. 1.8)
a1 1 1 1 o IR
(?13 Q.
ull g ] 1 B K g 5
T -
O a4l I312] I 3
(9]
—~14] 1312]
Traditional accumulator Suboptimal performance of adder tree

(adder tree)

v Different vertex has different number of degrees (i.e., the data received in each
cycle belongs to multiple vertices)

v' Traditional adder tree can only accumulate for one vertex, leading to
suboptimal performance

v'Using multiple adder trees is kind of a cop-out. It works, but significantly
increases hardware fanouts

SCTS 25 her



Computation Architecture — PACT’18

> Problem Formulization
v Original (integer programming): pj = Xi<i<n @i " bij, 1 £j <M
v Characteristic

O partial order in pull model, i.e., all requests are sent in an ascending
order of destination vertex

O b;<b, ifi<k
v Simplified (Prefix Sum):  p; = f(c}), where
fl - [f(i—1)+a,-, i & {c], 3. Ch)

aj, i€ {c;,cz1 ..... c}ﬂ}

» Differences between traditional prefix sum and our problem
v' Breakpoint
O 1(i) is initialized to a, when a break point ¢! appears
O Accumulator needs to find all dynamically changing ¢t
v Filter:
O Only f(c?) is the valid results, where c? also dynamically changes
O Accumulator needs to precisely select the accumulated results

SCcS 26
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Computation Architecture — PACT’18

» Methodology
v Optimize traditional prefix sum

adders to mltlgate the gaps Degree-Aware Accumulation
/ We Choose Ladner-FISCher Llpditing Updil:ing Updﬁting Llpdttingl,"r
adders for minimized latency and = Ll e Do) ey
resources Parallel Source Accumulator
v Partial order in ¢t (ct s ¢l ifi <j) | ,
v Adding log(|Pipeline]) bits to NiMMttplexer | 1 || 5 s
each update as vertex ID Sequentrall[)estl'nation ‘ b S 8
v ¢l can be generated in runtime Accumulator J IS 5
Accumulator Architecture]- =

by comparing the vertex ID of
consecutive updates

pi=f (cf), where

f(i—]}-l-ﬂ-, Ui = V-1

£0) fli-N)+a;, i¢ {Cll,cé,.,.,c}ﬂ f(t} — [ ' I B I

i)= _ _ ~
ai, iE{Cll,Cé,...,clJ} aj, Uj F Uj=1
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Computation Architecture — PACT’18

Degree-Aware Accumulation H

(white grid): out = in

in, +in, (id, == id,)
in, (id, ! = id,)

Updating
value
1

Updating
value

Updating

|
Updating |’
value | """

value |
1

¥ ¥ ¥ L3
Parallel Source Accumulator

!

N : M Multiplexer ———

(gray grid): out = {

Sequential Destination data[i] = Results[of fset[i] % N]
Accumulator

Accumulator Architecturel-_

Crosshar Swill:h

Vertex Dafa Write
Bagk

» Hardware Designs
v" Breakpoint recognition: replacing original adder logic with the conditional
adding logic
v" Data filtering: select the accumulated results in the location of each vertex’s last
update

SCTS 28 foder



Computation Architecture — PACT’18

|Va|ue: ID | Update D Transfer Node ‘:I Adder Node

i i ; Lo

Cycle 4

» Example

v
v
v

Fully pipelined accumulation
Accumulator receives 8 updates in the 1st cycle

Adder directly sends the second data when finding a breakpoint in the 2nd
and 3rd cycle

Because the location of the last updates of vertex 1 is 3, accumulator select
the data in the 3rd port as the results for vertex 1

29 feder




Computation Architecture — PACT’18

» Evaluation
v' Platform: Xilinx U250 Acceleration card, use 2 channel memory only

N

w

Performance (GTEPSs)
]

o

v Performance (170MHz ~ 250MHz):

v' 3.96x speedups for finance anti-fraud applications from Ping An Technology

1.23 - 1.86 GTEPs (Overall) or 3.69 — 5.58 GTEPs (Single Iteration) for BFS
3.22 - 3.98 GTEPs for PageRank
v Normalized Speedup: 3.6-6.2x speedup comparing to state-of-the-art

-
T

B Our Accelerator

\)@
R o

&
Q_
BFS

RS
@Q_@

PageRank

Performance

()]
T

Normalized Speedup

o

(&)}
T

-
T

7|l ForeGraph -
[ Our Accelerator|

N
!

w
T

\e]
T

PageRank
Speedup

More details in “An Efficient Graph Accelerator with Parallel Data Conflict Management ”

SCLS
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Memory Subsystem — MICRO’20

Graph Processing Graph Mining

Vertices: |1]2|3]4]5]6]7 Vertices: |1]2|3]4|5]|6]|7
(random access on all vertices) (randomaccess on all vertices)

(random access on first edge)

Edges: | ... | L[4[ !ﬂ_ﬂ! L3 Edges: |2|3!4!5!? 8] ... |

(sequential access on others) (random access on all edges)

» Memory Access Characteristics

v

AN

Graph processing: random vertex access
Graph Mining: random vertex and edge access
Existing accelerators statically hold all vertex data on-chip

While this mechanism is efficient for graph processing, it is not practical to
hold all edge data for graph mining with limited on-chip memory capacity
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Memory Subsystem — MICRO’20

» Insight: Exploration Locality

@Q  (A—®
av

1st Iteration

@&

2-Vertex

Input Graph Fmhaddine<
=100 7
8 1
g Py
g _-©
g | ' ::i'-'-f-‘:}—:".___d_—ﬂ& |
S - —{— Citeseer
g T — - —O— P2P
§ |17 —— Astro
8 ol 7~ Mico
s . , :
o 1 3 4

#lteration

(a) Vertex access

oF Joll Yotol Sogo
@O 000 ®
' Jo%ol SoSol Sod0

=]
=

o
=

Percentage of Accesses (%)
(=]
S 3

=

2nd Iteration

3-Vertex Embeddings

P2P

o7 Mico

—[— Citeseer| |

I Astro |7

3
#lteration

(b) Edge access

32

4

v' An intuition is whether we
can achieve considerable
performance by storing
only a small portion of
data?

Exploration locality: the
power-law distribution in
natural graphs is amplified
during the process. 5%
data can generate at
most 95% memory
accesses
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Memory Subsystem — MICRO’20

1.0+ i —_ —&— Motifs (MiCo) —m— Motifs (Youtube) —&— Cliques (MiCo)
- +— FSM (CiteSeer) - @ Motifs(SN)
£ | :
- v —{1}— 0-hop ON E
./ -~ 12
2 A O~ 1-hop ON 2z 10
508} —/\— 2-hops ON| o
o <7 3-hops ON £ 100 —
< 5
= i
= 10°
0.6 “'-m_ﬂ__‘_ﬂ - B
L 1 E JOJ l
1 2 3 4 z 6

#lteration Size of the Subgraphs

» Methodology: Divide-and-Conquer
v’ Statically retaining frequently accessed data, and dynamically replacing
the left

» Challenge

v Frequency calculation: hard to precisely locate the frequently accessed data
v Intermediate results: hard to be stored in off-chip memory

SCcCS 33 feder




Memory Subsystem — MICRO’20

[ Processing Units
1
A 1.0+ R e -3 1000 —{+ 1 lteration {2 terations. 1
. I Crossbar - b 1001 \— 3 terations —* 7 4 Iterations ..—-"D.l
g% f L , S ) B et
Eﬁ FIFO FIFO Controller E ; é e e
- s 0.8} —/— 2-hops ON| ] o 01 e Pt
. [ L 8 <7 3-hops ON E 0.01f O " N S
<., 29 < 50.001} e = 1
gg g3 Eieall
o> Vertex g z g 5 06l - | s = v 1
= E Memory Mssony 3° 25 ' . 0 B85 1 2 3
o Partiti 1 2 3 4 #Hop
5 E artition ME?ESW - T #lteration (b) ON . head
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» Hardware Design
v' Memory hierarchy: static memory (scratchpad memory) + dynamic memory

(cache)
v" Observation: access frequency of a vertex is mainly determined by the degrees

of itself and its 1-hop neighbors
v Data addressing: predict access frequency with high accuracy and low overheads

v' Replacement policy: Locality-aware replacement

_%t’:-cl.
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Memory Subsystem — MICRO’20

» Hardware Design

v' DES-based architecture:
extending the subgraphs in DFS
manner to avoid writing back
intermediate results

v' Slot-based pipeline: efficiently
process different subgraphs in
parallel in a dataflow manner

v Data compression: compacting
the parameters of DFS traverse

v Load-balance: aggressive and
precise work-stealing mechanism
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Memory Subsystem — MICRO’20

» Evaluation
v' Platform: Xilinx U250 FPGA acceleration card
v Performance: = 2.4x speedups comparing to state-of-the-art Fractal
v' Energy efficiency: = 33.6x comparing to state-of-the-art Fractal

c
10000 g I Gramer (Exec. Time) | 2 100000 L - (Il Gramer |}
[ Gramer (Preproc. Time)| I RStream
1000 - [ RStream 10000 - /I Fractal-l

I Fractal-|
[P Fractal-E ]

F I Fractal-E
1000 - g P

Normalized Total Time

100 |
| 100 PRE PR

TS | B N D ! ;

: 10

1 ;

Normalized Energy Consumpt

0.1
Citeseer P2P Astro Mico Patents

Citeseer P2P Astro Mico Patents

Performance Energy Efficiency

More details in “A Locality-Aware Energy-Efficient Accelerator for Graph Mining Applications”
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Outline

O Introduction of Graph Analytics
» Background of Graph Analytics
» The importance of Graph Analytics
» Why we need Graph accelerator

O Introduction of our work
» Performance analysis
» Computation Architecture Designs
» Memory System Designs

O Conclusion
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Conclusion

Graph is ubiquitous in our life
Researching graph analytics is important

Graph processing is bottlenecked by both computation and
memory access

O Atomic operations in graph analytics can be accumulated in
parallel to avoid pipeline stalls

O Exploration locality can be leveraged to achieve consider
memory performance on large volume of graph data

OO0
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END

Thanks!
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