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 Origin: Seven Bridges of Königsberg

What is Graph?

How to walk 

cross each 

bridge once 

and only once?
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What is Graph?
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 Origin: Seven Bridges of Königsberg

 Graph: describing the relationships (edges) between different entities

(vertices) with high flexibility and accuracy

 Rest Area -> Vertex, Bridge -> Edge

 An undirected graph with four vertices and seven edges
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What is Graph?

5

Graph is ubiquitous!

World Wide Web Social Networks

Traffic Networks Biology



What is Graph Analytics?

 Graph processing

 Computing vertex/edge properties to analyze graph property, e.g., BFS, 

SSSP, PageRank

 Gather-Apply-Scatter: iterative computation based on neighbors

6

Each vertex in the input 
graph iteratively updates 
itself based on the 
properties of its neighbors

 Graph analytics: solving real-world problems by analyzing graphs



What is Graph Analytics?

 Graph processing

 Computing vertex/edge properties to analyze graph property, e.g., BFS, 

SSSP, PageRank

 Gather-Apply-Scatter: iterative computation based on neighbors

 Widely adopted to analyze relationships
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Model how people interact 
and influence each other to 
predict COVID-19 outbreaks

 Graph analytics: solving real-world problems by analyzing graphs



What is Graph Analytics?

 Graph mining

 Searching interesting graph patterns to analyze graph structure, e.g., 

subgraph matching, motif counting

 Extend-Filter-Process: iterative extension based on neighbors

8

Each subgraph in the 
input graph iteratively 
extends itself based on 
the edges of its neighbors

 Graph analytics: solving real-world problems by analyzing graphs



What is Graph Analytics?

 Graph mining

 Searching interesting graph patterns to analyze graph structure, e.g., 

subgraph matching, motif counting

 Extend-Filter-Process: iterative extension based on neighbors

 Widely used in social network, finance, and biology
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 Graph analytics: solving real-world problems by analyzing graphs

Detecting suspicious account 
by searching specific cash flow



Why We Need Graph Analytics?

NLP Image Processing Autopilot IOT

ASIC Designs NeuroscienceEDA Tools

We are in a golden age of AI: 

Machine Learning (ML) technologies are ubiquitous in our life

Why we need to research graph analytics (GA), which seems to 

be out of date？
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Why We Need Graph Analytics?

 Reason: the need of processing sparse data in real-world applications

 Both of ML and GA can be abstracted as matrix computation

 ML: Dense matrix computation, where most of the elements are nonzero

(e.g., 100% in DNN) 

 GA: Sparse matrix computation, where most of the elements are  zero (e.g., 

99.9999997% in Twitter Graph)
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W: Dense
weight matrix

W: Sparse
weight matrix

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Car

Not Car

Match

Not Match

Input

Machine Learning

Output

Input Output

Graph Analytics

10

11

12

10

11

12

w14 w15 w16

w24 w25 w26

w34 w35 w36

w14 0 0

0 w25 0

0 w25 w36

4 5 6

1

2

3

1

2

3

4 5 6

：

：



Why We Need Graph Analytics?

 ML and GA are adopted in different areas
 ML: a representative of regular applications which process dense data

 GA: a representative of irregular applications which process sparse data 

 Both of them are necessary for solving real-world problems

Graph AnalyticsMachine Learning

NLP Image Processing

Autopilot Speech Recognition

Social Network Analysis

RDF Database
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Why We Need Graph Analytics?

 Researches on sparsity are increasingly important
 Sparsity is ubiquitous in our life

 Even typical dense applications might have some kind of sparsity

 Most of existing SWs and HWs are designed for dense data

 Efficient processing technologies for sparse data are essential

We only interact with a 

limited number of items

Existing SWs & HWs are 

designed for dense data

Sparsity 

is ubiquitous

Sparsity also exists in 

dense applications

Efficient processing 

technologies are missing

ML also has sparsity

（Sparse NN, GNN）
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Why We Need Graph Accelerators?

 Sparsity in graph data causes significant irregularity

 Sparse data leads to irregular computations and memory accesses

 General-purpose processors (e.g., CPU, GPU) are designed to efficiently 

process dense data

 Sparse data cases significant data contentions and random accesses

Shared Cache

Pipeline

Private 

Caches

Private

Caches

Pipeline…

Main Memory

64B Granularity

Irregularity is inefficient on general-

purpose architecture

②

①

① Data contention on the same irregular data

②Mismatched access granularity
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Sparsity leads to 

irregular computation

 ML: dense data process is regular and sequential

 GA: sparse data process is irregular and random

Machine Learning Graph Analytics
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Our Objective

16

16

Building A General-Purpose Graph 

Analytics Computer



Our Work in Accelerator Designs
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Hardware

Software

Performance Analysis for Graph analytics

Non-atomic 

Design

Computation Architecture

High-throughput 

pipeline
High-performance 

Scheduling
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Hybrid 

Hierarchy

Memory Subsystem

Locality-aware 

Replacement

Memory-efficient 

management

1

3

1 Towards Dataflow-based 

Graph accelerator 

(ICDCS’17)

2 An Efficient Graph 

Accelerator with Parallel 

Data Conflict Management 

(PACT’18)

3 A Locality-Aware Energy-

Efficient Accelerator for 

Graph Mining Applications 

(MICRO’20)



Performance Analysis — ICDCS’17

 Understanding the Performance bottlenecks

 Existing work believes that graph analytics is bottlenecked by memory 

accesses

 We find that most (i.e., 41%) of the CPU cycles are stalled on memory 

accesses

 There are still 35% of the CPU cycles are stalled on core execution
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Performance Analysis — ICDCS’17
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Graph: 0.867

SPEC: 1.55

Average 

IPC is 

only 0.87

ILP is 0 or 1 in 

62% CPU 

cycles for 

Graph Analytics

ILP is 0 or 1 in 33% 

CPU cycles for 

SPEC2006



Performance Analysis — ICDCS’17
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 Limitation of Out-of-Order Execution

 Out-of-order execution, but sequential retirement

 When facing a long latency instruction, OOO buffers can soon be clogged by 

succeeding instructions that are already executed

 OOO buffers account for 50.3% of the total resource-related stalls

 Long latency instructions in graph analytics

 Computation: atomic operations; Memory: random vertex/edge accesses
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More details in “Towards Dataflow-based Graph accelerator” 
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 Inefficiencies of atomic operations in graph analytics

 Sparsity cause irregular computations, which lead to data contention

Computation Architecture — PACT’18
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Every data is only accessed by one pipeline in each cycle

Original 

workloads 
Partitioned 

workloads

…

Parallel 

Process
Hardware 

Support

Typical NN 

accelerator

~

~

~

Input Process Output

Regular Applications



 Inefficiencies of atomic operations in graph analytics

 Sparsity cause irregular computations, which lead to data contention

 To ensure the correctness of results, existing work uses atomic operations to 

serialize the process of conflict data

Computation Architecture — PACT’18
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Every data might be simultaneously accessed by multiple pipelines



 Inefficiencies of atomic operations in graph analytics

 Sparsity cause irregular computations, which lead to data contention

 To ensure the correctness of results, existing work uses atomic operations to 

sequentially access the conflict data

 Overheads of atomic operations: 45%
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Computation Architecture — PACT’18
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Whether we can parallelize the process of conflict data while ensuring 

the accuracy of results?



 Characteristics of graph atomic 

operations: following commutative 

law and associative law

 Insight: Parallel accumulation

Computation Architecture — PACT’18

 Insight: accumulating the 

atomic operations in parallel 

before writing back the results
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 Challenge: Irregular vertex degrees

Computation Architecture — PACT’18

 Different vertex has different number of degrees (i.e., the data received in each 

cycle belongs to multiple vertices)

 Traditional adder tree can only accumulate for one vertex, leading to 

suboptimal performance

 Using multiple adder trees is kind of a cop-out. It works, but significantly 

increases hardware fanouts
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 Problem Formulization

 Original (integer programming)：

 Characteristic

 partial order in pull model, i.e., all requests are sent in an ascending 

order of destination vertex

 bij ≤ bkj, if i ≤ k

 Simplified (Prefix Sum): 

 Differences between traditional prefix sum and our problem

 Breakpoint

 f(i) is initialized to ai when a break point c1
m appears

 Accumulator needs to find all dynamically changing c1
m

 Filter: 

 Only f(c2
j) is the valid results, where c2

j also dynamically changes

 Accumulator needs to precisely select the accumulated results

Computation Architecture — PACT’18

26



 Methodology

 Optimize traditional prefix sum 

adders to mitigate the gaps

 We choose Ladner-Fischer 

adders for minimized latency and 

resources

 Partial order in c1
m (c

1
i ≤ c1

j if i ≤ j)

 Adding log(|Pipeline|) bits to 

each update as vertex ID

 c1
m can be generated in runtime 

by comparing the vertex ID of 

consecutive updates

Computation Architecture — PACT’18

27



Computation Architecture — PACT’18

28

 Hardware Designs

 Breakpoint recognition: replacing original adder logic with the conditional 

adding logic

 Data filtering: select the accumulated results in the location of each vertex’s last 

update

𝑤ℎ𝑖𝑡𝑒 𝑔𝑟𝑖𝑑 : 𝑜𝑢𝑡 = 𝑖𝑛

𝑔𝑟𝑎𝑦 𝑔𝑟𝑖𝑑 : 𝑜𝑢𝑡 = ቊ
𝑖𝑛1 + 𝑖𝑛2 (𝑖𝑑1 == 𝑖𝑑2)

𝑖𝑛2 (𝑖𝑑1 ! = 𝑖𝑑2)

𝑑𝑎𝑡𝑎[𝑖] = 𝑅𝑒𝑠𝑢𝑙𝑡𝑠[𝑜𝑓𝑓𝑠𝑒𝑡[𝑖] % 𝑁]



Computation Architecture — PACT’18

 Example
 Fully pipelined accumulation

 Accumulator receives 8 updates in the 1st cycle

 Adder directly sends the second data when finding a breakpoint in the 2nd 

and 3rd cycle 

 Because the location of the last updates of vertex 1 is 3, accumulator select 

the data in the 3rd port as the results for vertex 1
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Computation Architecture — PACT’18

Performance

 Evaluation

 Platform: Xilinx U250 Acceleration card, use 2 channel memory only

 Performance (170MHz ~ 250MHz): 

1.23 - 1.86 GTEPs (Overall) or 3.69 – 5.58 GTEPs (Single Iteration) for BFS 

3.22 - 3.98 GTEPs for PageRank

 Normalized Speedup: 3.6-6.2x speedup comparing to state-of-the-art

 3.96x speedups for finance anti-fraud applications from Ping An Technology

Speedup

30

More details in “An Efficient Graph Accelerator with Parallel Data Conflict Management ” 



Memory Subsystem — MICRO’20

 Memory Access Characteristics

 Graph processing: random vertex access 

 Graph Mining: random vertex and edge access

 Existing accelerators statically hold all vertex data on-chip

 While this mechanism is efficient for graph processing, it is not practical to 

hold all edge data for graph mining with limited on-chip memory capacity
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 An intuition is whether we 

can achieve considerable 

performance by storing 

only a small portion of 

data?

 Exploration locality: the 

power-law distribution in 

natural graphs is amplified 

during the process. 5% 

data can generate at 

most 95% memory 

accesses

 Insight: Exploration Locality

Memory Subsystem — MICRO’20
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Memory Subsystem — MICRO’20

 Methodology: Divide-and-Conquer 

 Statically retaining frequently accessed data, and dynamically replacing 

the left

 Challenge

 Frequency calculation: hard to precisely locate the frequently accessed data

 Intermediate results: hard to be stored in off-chip memory
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Memory Subsystem — MICRO’20

 Hardware Design

 Memory hierarchy: static memory (scratchpad memory) + dynamic memory 

(cache)

 Observation: access frequency of a vertex is mainly determined by the degrees 

of itself and its 1-hop neighbors

 Data addressing: predict access frequency with high accuracy and low overheads

 Replacement policy: Locality-aware replacement
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Memory Subsystem — MICRO’20

 Hardware Design

 DFS-based architecture: 

extending the subgraphs in DFS 

manner to avoid writing back 

intermediate results

 Slot-based pipeline: efficiently 

process different subgraphs in 

parallel in a dataflow manner

 Data compression: compacting 

the parameters of DFS traverse

 Load-balance: aggressive and 

precise work-stealing mechanism

35



Memory Subsystem — MICRO’20

Performance

 Evaluation
 Platform: Xilinx U250 FPGA acceleration card

 Performance: ≥ 2.4x speedups comparing to state-of-the-art Fractal

 Energy efficiency: ≥ 33.6x comparing to state-of-the-art Fractal

Energy Efficiency
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More details in “A Locality-Aware Energy-Efficient Accelerator for Graph Mining Applications” 
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 Graph is ubiquitous in our life

 Researching graph analytics is important

 Graph processing is bottlenecked by both computation and 

memory access

 Atomic operations in graph analytics can be accumulated in 

parallel to avoid pipeline stalls

 Exploration locality can be leveraged to achieve consider 

memory performance on large volume of graph data

Conclusion
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END

Thanks!
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