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Motivations

Linear Model, Logistic Regression, SVM

Database Generalized Linear Model FPGA

Can We Use FPGAs to 
Accelerate GLM Training??

!
Yes, up to 11x, compared 
with the fastest CPU 
implementation we know.

Key Idea: Software/Hardware Co-Design

ML: Low-precision Training

DB: New Data Structure, 
optimized to bit-level

FPGA: Efficient Design
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OK, how does SGD work?



Stochastic Gradient Descent (SGD)

min
!

1
2
&
"

𝐴"𝑥# − 𝑏" $

Linear Regression

Training Data:
Database,

Sensor

Computing Device:
FPGA, GPU, 

CPU

Model:
DRAM,
Cache

Data Ar Model x

Gradient: dot(Ar, x)Ar Ar = get_data()

1

2

3

Two Interesting 
Properties

g = comp_grad(x,Ar)

x = x – g

P2: Can be done in low precision
(not 32-bit floating point) 

P1: Model can be staled, especially 
when running on multiple cores.

x = get_model()
4

set_model(x)



Intuition: Why Low Precision Works for ML

ML

0 0.5 1
“cat”“Not cat”



Intuition: Why Low Precision Works for ML

“It is a cat” (>0.5)

1.310245

X 0.602069

0.788857897

about 1.3

X about 0.6

about 0.78

Full precision Low precision

Relax, It is only Machine Learning.



Different Precision Levels are Required

“It is a cat”

“It is a cat”

3-bit

9-bit



Current Hardware Supports Limited Precision Levels

Char (8-bit), 
Short (16-bit) 

FP8 (8-bit), 
FP16 (16-bit)

INT8 (8-bit) 

CPU GPU TPU



Goal of MLWeaving

For Generalized Linear Model training, can we 
enable things that cannot be well done on CPUs??

! Any-precision Training High-throughput Sync. Design
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Two Goals of Arbitrary-precision Training: Using First Principles Thinking

1, One hardware design and one copy of dataset 
support any-precision training.

2, Our design achieves linear speedup with lower precision.
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Data Compute

Observation 2: Low precision (e.g., 8 bit fixed 
point) often provides reasonable quality

Observation 3: Different training task might 
need different precision level even on the 

same dataset

Can we store the data in a new data 
structure that efficiently supports 

arbitrary precision data movement?

How most systems store ML data today:
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MLWeaving Memory Layout

Observation 1: 
Often memory bandwidth bound
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More complicated 
when a row has 
thousands of features, 
but you get the idea.

If we need 1-bit?
If we need 3-bits?

MLWeaving does not work out on CPUs. CPU does not have custom 
instruction for MLWeaving memory layout and then we have to group 
bits from different memory locations before the further computing. 

MLWeaving:
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MLWeaving memory layout: Key idea of MLWeaving hardware design:

MLWeaving Hardware Design: Key Idea 

To use bit-serial multiplier to enable 
efficient data processing from the 
MLWeaving memory layout.

How bit-serial multiplier works?
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4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

How Bit-serial Multiplier Deals with Low Precision?

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Each bit should be binary, but we use 
decimal for ease of understanding.



4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

How Bit-serial Multiplier Deals with Low Precision?

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

1234

BSMX 0020

Initialization:

0000 0Sum =
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4 3 0 0

How Bit-serial Multiplier Deals with Low Precision?

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

BSMX 0020

Initialization:

Bit-Serial (S)

Bit-Parallel (P)

1234

0000 0Sum =

Sum += P * [i]S



4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 1-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

BSMX 0020

Memory

Hardware

1234

1st Cycle:

0000 0

1234

Sum =



4

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 1-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

BSMX 0020

1234

1st Cycle:

0000 0

123

4 means 4000.

Sum += 20 * 4000

Sum =

Hardware

Memory



BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 1-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

1st Cycle:

0008 0

123

Done with 1-bit precision, 
or proceed to the next bit.

Sum =

Hardware

Memory



BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 2-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

2nd Cycle:

0008 0

123

Sum =

Hardware

Memory



3
BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 2-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

2nd Cycle:

0008 0

12

3 means 300.

Sum += 20 * 300

Sum =

Hardware

Memory



BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 2-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

2nd Cycle:

0068 0

12

Done with 2-bit precision, 
or proceed to the next bit.

Sum =

Hardware

Memory



BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 3-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

3th Cycle:

0068 0

12

Sum =

Hardware

Memory



2
BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 3-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

3th Cycle:

0068 0

1

2 means 20.

Sum += 20 * 20

Sum =

Hardware

Memory



BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 3-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

3th Cycle:

0468 0

1

Done with 3-bit precision, 
or proceed to the next bit.

Sum =

Hardware

Memory



BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 4-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

4th Cycle:

0468 0

1

Sum =

Hardware

Memory



1BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 4-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

4th Cycle:

0468 0

1 means 1.

Sum += 20 * 1

Sum =

Hardware

Memory



BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 4-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

4th Cycle:

2468 0
Done with 4-bit precision

Sum =

Hardware

Memory



Bit-serial Multiplier

Bit-serial MultiplierGradient: 𝐴𝑟 ∗ (𝐴𝑟 ∗ 𝑥 − 𝑏𝑟)
Dot product: 𝐴𝑟 ∗ 𝑥

Bit-serial Bit-parallel

MLWeaving memory layout:
MLWeaving hardware design:

Custom Computation for MLWeaving

1st row A A!
[!] A%

[!] A!
[%] A%

[%] A!
[&] A!

[#]A%
[&] A%

[#]

2nd row B 𝐵!
[!] 𝐵!

[%] 𝐵!
[&] 𝐵!

[#]𝐵%
[!] 𝐵%

[%] 𝐵%
[&] 𝐵%

[#]



Bit-serial multiplier + MLWeaving memory 
layout enable any-precision ML training.



MLWeaving’s Performance: Almost Linear Speedup with Lower Precision

Computing time vs. Precision Memory traffic vs. Precision
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SGD on the CPU: synchronous or asynchronous?



g = comp_grad(x,Ar)

x = x – g

set_model(x)

Ar = get_data()

x = get_model()

Sync. Single-Core SGD: Low Throughput

Training Data:
Database,

Sensor

Computing Device:
FPGA,

GPU, CPU

Model x:
DRAM,
Cache

Data Ar Model x

Gradient g: dot(Ar, x)ArCPU – Single Core

Causes Problem When Using Multiple Cores.

Read After Write (RAW) Dependency Regarding the Model x



Async. Multi-Core SGD: High Throughput

Multi-core SGD relies on asynchrony.

HogWild! [1]

ModelAverage [2]

[1] Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In NIPS. 2011.

[2] Parallelized Stochastic Gradient Descent. In NIPS. 2010.



Hogwild: Asynchrony

Model:
Cache

Data Ar Model x

Gradient: dot(Ar, x)Ar

Data Ar Model x

Gradient: dot(Ar, x)Ar

Problem? Cache-coherence is expensive, especially for dense data!

g = comp_grad(x,Ar)

x = x – g

set_model(x)

Ar = get_data()

x = get_model()

Shared model x among cores



ModelAverage: Asynchrony

A copy of model x for each core

Training Data:
Database,

Sensor

Computing Device:
FPGA,

GPU, CPU

Model x:
DRAM,
Cache

Data Ar Model x

Gradient g: dot(Ar, x)Ar

Data Ar Model x

Gradient g: dot(Ar, x)Ar

Averaging

Problem? Convergence might be slower.

g = comp_grad(x,Ar)

x = x – g

set_model(x)

Ar = get_data()

x = get_model()



Synchrony vs. Asynchrony on CPUs

Hardware Efficiency 
(Throughput)

Statistical Efficiency 
(Convergence Rate)

Single-core SGD 
(Synchrony)

Low High

Multi-core SGD 
(Asynchrony)

High Low



Synchronous SGD or asynchronous SGD on custom hardware?



SGD on Custom Hardware: The Best of Two Worlds

Hardware Efficiency 
(Throughput)

Statistical Efficiency 
(Convergence Rate)

Single-core 
(Synchrony)

Low High

Multi-core 
(Asynchrony)

High Low

Custom hardware
(Synchrony)

High High



Original Synchronous Implementation: Compute-Bound

Key idea: to keep the RAW 
dependency, regarding the model x.

Original  Implementation
Model
Read

Gradient
Compute

Model
Write

Cycles



Original Synchronous Implementation: Compute-Bound

Key idea: to keep the RAW 
dependency, regarding the model x.

Original  Implementation

50% Utilization

Model
Read

Gradient
Compute

Model
Write

1st batch

1st batch

2rd batch

2rd batch

1st gradient 2rd gradient

Cycles



Optimal Synchronous Implementation: Memory-Bound

With Chaining: Memory-bound

Original: Compute-bound

Observation: Custom hardware can update the 
model (thousands of weights) at the granularity 
level: 64 weights, not the whole model.

Model
Read

Gradient
Compute

Model
Write

1st batch 2rd batch

1st batch 2rd batch

1st gradient 2rd gradient

Cycles

Model
Read

Gradient
Compute

Model
Write

1st batch

1st batch

1st gradient

2rd batch

2rd batch

2rd gradient

Cycles



Optimal Synchronous Implementation: Memory-Bound

High throughput: “sync” is as fast as “async”.

Model
Read

Gradient
Compute

Model
Write

1st batch 2rd batch

1st batch 2rd batch

Cycles

Model
Read

Gradient
Compute

Model
Write

1st batch

1st batch

1st gradient

2rd batch

2rd batch

2rd gradient

Cycles

Gap: gradient from 64 weights

Observation: Custom hardware can update the 
model (thousands of weights) at the granularity 
level: 64 weights, not the whole model.

With Chaining: Memory-bound

Original: Compute-bound

1st gradient 2rd gradient



Effect of Sync. Design

Training loss vs. Number of Epochs

ModelAverage and Hogwild on a multi-core CPU: Async.
MLWeaving on the custom hardware: Sync. 

Our sync. design needs 
fewer epochs to converge.
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End-to-End Performance: MLWeaving

Training loss vs. Time Training loss vs. Memory

ModelAverage and Hogwild on an Intel CPU: 14 cores, AVX2-enhanced, 8-bit dataset. 

MLWeaving on an FPGA: 3-bit dataset.



Thanks!

Big Data

Machine Learning

New Hardware


