
Zeke Wang (王则可)

CCAI, Computer Science, Zhejiang University

Accelerating Generalized Linear Models with
MLWeaving: A One-Size-Fits-All System for
Any-Precision Learning

The world is moving
in three directions

Motivations

Big Data Machine Learning New Hardware

The Dying of Moore’s LawExciting New TechniquesLarger and More Complicated

My work: intersection of these three directions

FPGAGPU TPU

Linear Model
Logistic Regression

SVM

Neural Networks

Tree-based Models

…

Motivations

Big Data Machine Learning New Hardware

The Dying of Moore’s LawExciting New TechniquesLarger and More Complicated

My work: intersection of these three directions

FPGAGPU TPU

Linear Model
Logistic Regression

SVM

Neural Networks

Tree-based Models

…

This Work

Motivations

Linear Model, Logistic Regression, SVM

Database Generalized Linear Model FPGA

Can We Use FPGAs to
Accelerate GLM Training??

!
Yes, up to 11x, compared
with the fastest CPU
implementation we know.

Key Idea: Software/Hardware Co-Design

ML: Low-precision Training

DB: New Data Structure,
optimized to bit-level

FPGA: Efficient Design

Outline of MLWeaving

Quick Background MLWeaving

Stochastic Gradient Descent (SGD)

Low Precision

Synchronous vs. Asynchronous

Arbitrary-precision Training

MLWeaving Memory Layout

MLWeaving Hardware Design

Efficient Synchronous Design

OK, how does SGD work?

Stochastic Gradient Descent (SGD)

min
!

1
2
&
"

𝐴"𝑥# − 𝑏" $

Linear Regression

Training Data:
Database,

Sensor

Computing Device:
FPGA, GPU,

CPU

Model:
DRAM,
Cache

Data Ar Model x

Gradient: dot(Ar, x)Ar Ar = get_data()

1

2

3

Two Interesting
Properties

g = comp_grad(x,Ar)

x = x – g

P2: Can be done in low precision
(not 32-bit floating point)

P1: Model can be staled, especially
when running on multiple cores.

x = get_model()
4

set_model(x)

Intuition: Why Low Precision Works for ML

ML

0 0.5 1
“cat”“Not cat”

Intuition: Why Low Precision Works for ML

“It is a cat” (>0.5)

1.310245

X 0.602069

0.788857897

about 1.3

X about 0.6

about 0.78

Full precision Low precision

Relax, It is only Machine Learning.

Different Precision Levels are Required

“It is a cat”

“It is a cat”

3-bit

9-bit

Current Hardware Supports Limited Precision Levels

Char (8-bit),
Short (16-bit)

FP8 (8-bit),
FP16 (16-bit)

INT8 (8-bit)

CPU GPU TPU

Goal of MLWeaving

For Generalized Linear Model training, can we
enable things that cannot be well done on CPUs??

! Any-precision Training High-throughput Sync. Design

Outline

Quick Background MLWeaving

Stochastic Gradient Descent (SGD)

Low Precision

Synchronous vs. Asynchronous

Arbitrary-precision Training

MLWeaving Memory Layout

MLWeaving Hardware Design

Efficient Synchronous Design

Two Goals of Arbitrary-precision Training: Using First Principles Thinking

1, One hardware design and one copy of dataset
support any-precision training.

2, Our design achieves linear speedup with lower precision.

Outline

Quick Background MLWeaving

Stochastic Gradient Descent (SGD)

Low Precision

Synchronous vs. Asynchronous

Arbitrary-precision Training

MLWeaving Memory Layout

MLWeaving Hardware Design

Efficient Synchronous Design

A!
[#]A!

[!]

Data Compute

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the

same dataset

Can we store the data in a new data
structure that efficiently supports

arbitrary precision data movement?

How most systems store ML data today:

1 1

1 1 1 1

2 2 2

2 2 2 2

1st row A

2nd row B

1st feature 2nd feature

MLWeaving:

1st row A

A!
[%] A!

[&]

B!
[!] B!

[%] B!
[&] B!

[#]

A%
[!] A%

[%] A%
[&] A%

[#]

B%
[!] B%

[%] B%
[&] B%

[#]

A!
[!] A%

[!]

MLWeaving Memory Layout

Observation 1:
Often memory bandwidth bound

MLWeaving Memory Layout

Data Compute

Observation 1:
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the

same dataset

Can we store the data in a new data
structure that efficiently supports

arbitrary precision data movement?

How most systems store ML data today:

A!
[!] 1 1 1

1 1 1 1

A%
[!] 2 2 2

2 2 2 2

1st row A

2nd row B

1st feature 2nd feature

1st row A

A!
[!] A%

[!]A!
[%] A!

[&] A!
[#]

𝐵!
[!] 𝐵!

[%] 𝐵!
[&] 𝐵!

[#]

A%
[%] A%

[&] A%
[#]

𝐵%
[!] 𝐵%

[%] 𝐵%
[&] 𝐵%

[#]

MLWeaving:

Data Compute

Observation 1:
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the

same dataset

Can we store the data in a new data
structure that supports arbitrary

precision data movement?

How most systems store ML data today:

A!
[!] 1 1 1

1 1 1 1

A%
[!] 2 2 2

2 2 2 2

1st row A

2nd row B

1st feature 2nd feature

1st row A A!
[!] A%

[!]

A!
[%] A!

[&] A!
[#]

𝐵!
[!] 𝐵!

[%] 𝐵!
[&] 𝐵!

[#]

A%
[%] A%

[&] A%
[#]

𝐵%
[!] 𝐵%

[%] 𝐵%
[&] 𝐵%

[#]

MLWeaving Memory Layout

A!
[%] A%

[%]

MLWeaving:

Data Compute

Observation 1:
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the

same dataset

Can we store the data in a new data
structure that supports arbitrary

precision data movement?

How most systems store ML data today:

A!
[!] 1 1 1

1 1 1 1

A%
[!] 2 2 2

2 2 2 2

1st row A

2nd row B

1st feature 2nd feature

1st row A A!
[!] A%

[!]

A!
[%] A!

[&] A!
[#]

𝐵!
[!] 𝐵!

[%] 𝐵!
[&] 𝐵!

[#]

A%
[%] A%

[&] A%
[#]

𝐵%
[!] 𝐵%

[%] 𝐵%
[&] 𝐵%

[#]

MLWeaving Memory Layout

A!
[%] A%

[%]

A!
[&] A!

[#] A%
[&] A%

[#]

MLWeaving:

Data Compute

Observation 1:
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the

same dataset

Can we store the data in a new data
structure that supports arbitrary

precision data movement?

How most systems store ML data today:

A!
[!] 1 1 1

1 1 1 1

A%
[!] 2 2 2

2 2 2 2

1st row A

2nd row B

1st feature 2nd feature

1st row A A!
[!] A%

[!]

A!
[%] A!

[&] A!
[#]

𝐵!
[!] 𝐵!

[%] 𝐵!
[&] 𝐵!

[#]

A%
[%] A%

[&] A%
[#]

𝐵%
[!] 𝐵%

[%] 𝐵%
[&] 𝐵%

[#]

MLWeaving Memory Layout

A!
[%] A%

[%] A!
[&] A!

[#]A%
[&] A%

[#]

2nd row B

𝐵!
[!] 𝐵!

[%] 𝐵!
[&] 𝐵!

[#] 𝐵%
[!] 𝐵%

[%] 𝐵%
[&] 𝐵%

[#]

MLWeaving:

A!
[#]

Data Compute

Observation 1:
Often memory bandwidth bound

Observation 2: Low precision (e.g., 8 bit fixed
point) often provides reasonable quality

Observation 3: Different training task might
need different precision level even on the

same dataset

Can we store the data in a new data
structure that supports arbitrary

precision data movement?

How most systems store ML data today:

A!
[!] 1 1

1 1 1 1

A%
[!] 2 2 2

2 2 2 2

1st row A

2nd row B

1st feature 2nd feature

1st row A A!
[!] A%

[!]

A!
[%] A!

[&]

𝐵!
[!] 𝐵!

[%] 𝐵!
[&] 𝐵!

[#]

A%
[%] A%

[&] A%
[#]

𝐵%
[!] 𝐵%

[%] 𝐵%
[&] 𝐵%

[#]

MLWeaving Memory Layout

A!
[%] A%

[%] A!
[&] A!

[#]A%
[&] A%

[#]

2nd row B 𝐵!
[!] 𝐵!

[%] 𝐵!
[&] 𝐵!

[#]𝐵%
[!] 𝐵%

[%] 𝐵%
[&] 𝐵%

[#]

More complicated
when a row has
thousands of features,
but you get the idea.

If we need 1-bit?
If we need 3-bits?

MLWeaving does not work out on CPUs. CPU does not have custom
instruction for MLWeaving memory layout and then we have to group
bits from different memory locations before the further computing.

MLWeaving:

Outline

Quick Background MLWeaving

Stochastic Gradient Descent (SGD)

Low Precision

Synchronous vs. Asynchronous

Arbitrary-precision Training

MLWeaving Memory Layout

MLWeaving Hardware Design

Efficient Synchronous Design

MLWeaving memory layout: Key idea of MLWeaving hardware design:

MLWeaving Hardware Design: Key Idea

To use bit-serial multiplier to enable
efficient data processing from the
MLWeaving memory layout.

How bit-serial multiplier works?

1st row A A!
[!] A%

[!] A!
[%] A%

[%] A!
[&] A!

[#]A%
[&] A%

[#]

2nd row B 𝐵!
[!] 𝐵!

[%] 𝐵!
[&] 𝐵!

[#]𝐵%
[!] 𝐵%

[%] 𝐵%
[&] 𝐵%

[#]

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

How Bit-serial Multiplier Deals with Low Precision?

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Each bit should be binary, but we use
decimal for ease of understanding.

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

How Bit-serial Multiplier Deals with Low Precision?

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

1234

BSMX 0020

Initialization:

0000 0Sum =

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

How Bit-serial Multiplier Deals with Low Precision?

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

BSMX 0020

Initialization:

Bit-Serial (S)

Bit-Parallel (P)

1234

0000 0Sum =

Sum += P * [i]S

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 1-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

BSMX 0020

Memory

Hardware

1234

1st Cycle:

0000 0

1234

Sum =

4

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 1-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

BSMX 0020

1234

1st Cycle:

0000 0

123

4 means 4000.

Sum += 20 * 4000

Sum =

Hardware

Memory

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 1-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

1st Cycle:

0008 0

123

Done with 1-bit precision,
or proceed to the next bit.

Sum =

Hardware

Memory

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 2-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

2nd Cycle:

0008 0

123

Sum =

Hardware

Memory

3
BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 2-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

2nd Cycle:

0008 0

12

3 means 300.

Sum += 20 * 300

Sum =

Hardware

Memory

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 2-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

2nd Cycle:

0068 0

12

Done with 2-bit precision,
or proceed to the next bit.

Sum =

Hardware

Memory

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 3-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

3th Cycle:

0068 0

12

Sum =

Hardware

Memory

2
BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 3-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

3th Cycle:

0068 0

1

2 means 20.

Sum += 20 * 20

Sum =

Hardware

Memory

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 3-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

3th Cycle:

0468 0

1

Done with 3-bit precision,
or proceed to the next bit.

Sum =

Hardware

Memory

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 4-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

4th Cycle:

0468 0

1

Sum =

Hardware

Memory

1BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 4-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

4th Cycle:

0468 0

1 means 1.

Sum += 20 * 1

Sum =

Hardware

Memory

BSM

4 3 2 1

4 3 2 0

4 0 0 0

4 3 0 0

Bit-serial Multiplier: 4-Bit Precision

Normal Multiplier

X 0 0 2 0
8 6 4 2 0

X 0 0 2 0
8 6 4 0 0

4-bit:

3-bit:

X 0 0 2 0
8 6 0 0 0

2-bit:

X 0 0 2 0
8 0 0 0 0

1-bit:

Bit-serial Multiplier (BSM)

X 0020

1234

4th Cycle:

2468 0
Done with 4-bit precision

Sum =

Hardware

Memory

Bit-serial Multiplier

Bit-serial MultiplierGradient: 𝐴𝑟 ∗ (𝐴𝑟 ∗ 𝑥 − 𝑏𝑟)
Dot product: 𝐴𝑟 ∗ 𝑥

Bit-serial Bit-parallel

MLWeaving memory layout:
MLWeaving hardware design:

Custom Computation for MLWeaving

1st row A A!
[!] A%

[!] A!
[%] A%

[%] A!
[&] A!

[#]A%
[&] A%

[#]

2nd row B 𝐵!
[!] 𝐵!

[%] 𝐵!
[&] 𝐵!

[#]𝐵%
[!] 𝐵%

[%] 𝐵%
[&] 𝐵%

[#]

Bit-serial multiplier + MLWeaving memory
layout enable any-precision ML training.

MLWeaving’s Performance: Almost Linear Speedup with Lower Precision

Computing time vs. Precision Memory traffic vs. Precision

Outline

Quick Background MLWeaving

Stochastic Gradient Descent (SGD)

Low Precision

Synchronous vs. Asynchronous

Arbitrary-precision Training

MLWeaving Memory Layout

MLWeaving Hardware Design

Efficient Synchronous Design

SGD on the CPU: synchronous or asynchronous?

g = comp_grad(x,Ar)

x = x – g

set_model(x)

Ar = get_data()

x = get_model()

Sync. Single-Core SGD: Low Throughput

Training Data:
Database,

Sensor

Computing Device:
FPGA,

GPU, CPU

Model x:
DRAM,
Cache

Data Ar Model x

Gradient g: dot(Ar, x)ArCPU – Single Core

Causes Problem When Using Multiple Cores.

Read After Write (RAW) Dependency Regarding the Model x

Async. Multi-Core SGD: High Throughput

Multi-core SGD relies on asynchrony.

HogWild! [1]

ModelAverage [2]

[1] Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In NIPS. 2011.

[2] Parallelized Stochastic Gradient Descent. In NIPS. 2010.

Hogwild: Asynchrony

Model:
Cache

Data Ar Model x

Gradient: dot(Ar, x)Ar

Data Ar Model x

Gradient: dot(Ar, x)Ar

Problem? Cache-coherence is expensive, especially for dense data!

g = comp_grad(x,Ar)

x = x – g

set_model(x)

Ar = get_data()

x = get_model()

Shared model x among cores

ModelAverage: Asynchrony

A copy of model x for each core

Training Data:
Database,

Sensor

Computing Device:
FPGA,

GPU, CPU

Model x:
DRAM,
Cache

Data Ar Model x

Gradient g: dot(Ar, x)Ar

Data Ar Model x

Gradient g: dot(Ar, x)Ar

Averaging

Problem? Convergence might be slower.

g = comp_grad(x,Ar)

x = x – g

set_model(x)

Ar = get_data()

x = get_model()

Synchrony vs. Asynchrony on CPUs

Hardware Efficiency
(Throughput)

Statistical Efficiency
(Convergence Rate)

Single-core SGD
(Synchrony)

Low High

Multi-core SGD
(Asynchrony)

High Low

Synchronous SGD or asynchronous SGD on custom hardware?

SGD on Custom Hardware: The Best of Two Worlds

Hardware Efficiency
(Throughput)

Statistical Efficiency
(Convergence Rate)

Single-core
(Synchrony)

Low High

Multi-core
(Asynchrony)

High Low

Custom hardware
(Synchrony)

High High

Original Synchronous Implementation: Compute-Bound

Key idea: to keep the RAW
dependency, regarding the model x.

Original Implementation
Model
Read

Gradient
Compute

Model
Write

Cycles

Original Synchronous Implementation: Compute-Bound

Key idea: to keep the RAW
dependency, regarding the model x.

Original Implementation

50% Utilization

Model
Read

Gradient
Compute

Model
Write

1st batch

1st batch

2rd batch

2rd batch

1st gradient 2rd gradient

Cycles

Optimal Synchronous Implementation: Memory-Bound

With Chaining: Memory-bound

Original: Compute-bound

Observation: Custom hardware can update the
model (thousands of weights) at the granularity
level: 64 weights, not the whole model.

Model
Read

Gradient
Compute

Model
Write

1st batch 2rd batch

1st batch 2rd batch

1st gradient 2rd gradient

Cycles

Model
Read

Gradient
Compute

Model
Write

1st batch

1st batch

1st gradient

2rd batch

2rd batch

2rd gradient

Cycles

Optimal Synchronous Implementation: Memory-Bound

High throughput: “sync” is as fast as “async”.

Model
Read

Gradient
Compute

Model
Write

1st batch 2rd batch

1st batch 2rd batch

Cycles

Model
Read

Gradient
Compute

Model
Write

1st batch

1st batch

1st gradient

2rd batch

2rd batch

2rd gradient

Cycles

Gap: gradient from 64 weights

Observation: Custom hardware can update the
model (thousands of weights) at the granularity
level: 64 weights, not the whole model.

With Chaining: Memory-bound

Original: Compute-bound

1st gradient 2rd gradient

Effect of Sync. Design

Training loss vs. Number of Epochs

ModelAverage and Hogwild on a multi-core CPU: Async.
MLWeaving on the custom hardware: Sync.

Our sync. design needs
fewer epochs to converge.

Outline

Quick Background MLWeaving

Stochastic Gradient Descent (SGD)

Low Precision

Synchronous vs. Asynchronous

Arbitrary-precision Training

MLWeaving Memory Layout

MLWeaving Hardware Design

Efficient Synchronous Design

End-to-End Performance: MLWeaving

Training loss vs. Time Training loss vs. Memory

ModelAverage and Hogwild on an Intel CPU: 14 cores, AVX2-enhanced, 8-bit dataset.

MLWeaving on an FPGA: 3-bit dataset.

Thanks!

Big Data

Machine Learning

New Hardware

