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Background

TVM is an open deep learning compiler stack for CPUs, GPUs, and

specialized accelerators.

— Compilation of deep learning models Iin
; i '*"4';‘,}\" ’7) Optimization
Tensorflow, Keras, PyTorch, etc, into O®F @ @ ?

minimum deployable modules.

_ Infrastructure to automatlca”y genera‘te Tensor Expression and Optimization Search Space
and optimize tensor operators on diverse
backends Wl.th optimized performance. ke Ege Clow

— VTA: Versatile Tensor Accelerator

AutoTVM

ASIC Device Fleet
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Background

e Auto-tune
— Determine schedules: Split, tile, fuse, re-order, etc. . outchannels
— Search the best schedules available for different EI
OPs.

— Search Algorithms: Random, grid search, XGBTuner.

in_channels

in_channels

* Tuning Process . }

— Retrieve specific workload according to network | Wl _____________ ____________ EI?
structures. (e.g. conv2d(14, 14, 32, 32)) o o

— Profiling trail-runs on actual hardware, determining

the best schedule available | data(b_out, ic_out) res(b_out, oc_out)

batch
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FlashTVM

* Architecture

Applications

Compiler

Hardware
Abstraction

Accelerators Datacenter FPGAs
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Framework Enhancements

* The Current VTA only works on edge SoC FPGA Devices

— Based on Shared-Memory Model
- Shared DDR memory via internal bus
— Most datacenter FPGA accelerations cards are PCle cards
- Memory access via PCle Link
- High communication cost
- Need to minimize data exchange

conv2d
DFS order
maxpool

CPU

* Heterogeneous Co-processing Framework Cony2
— IR pass: annotate device types (on_device)

— Enhanced IR pass: Tag and propagate device types

— IR pass: Perform device_copy automatically

— Pointer type support
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Versatile Tensor Accelerator

* We refactored the codes to conform to OpenCL standard

— The original Xilinx HLS VTA core only works on Xilinx Edge FPGA devices
— Why OpenCL?

» Support from both Xilinx and Intel

* Proven portability and scalability
— For both official and custom boards

» Vendor-specific optimizations are built-in within
their respective official SDKs
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HDL or HLS?

 Emphasize on official toolchain support?

— FPGA Devices are not blank canvases
- Pre-defined logic cells, memories, DSP slices, etc.

- Different from vendor to vendor, from generation to generation, and even from product family

to family.
— To build FPGA applications of high performance Local Memory
- Design our circuit based on underlying elements a0
J ying Replicate 0
— “Double Pumping” of BlockRAM Read port 0
< L
- Number of available physical ports < Read port 1 M20K
Available on Arria 10 but not Stratix 10 oRead port
- Available o ia ut not Stratix Write port X (LK
(LK
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FlashTVM

e Some operations are not supported on existing VTA core

— Get rid of CPU-assisted calculations

— Additional instructions for continuous calculations on FPGA

« As we have more resources available on datacenter FPGAsS
— The original HLS VTA coding can scale up

— Performance degradations observed!

— Little improvement over the original design
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Performance Considerations

« External memory bandwidth
— Hardware Capability (number of DDR channels, HBM, etc.)

— Memory Access Efficiency

ARVALID [\ [\ [
ARADDR é(m}éi% A R2 A R3 |
RVALID 1 [\ [\
RDATA 7% D1 ¥ D2 ¥
ot I A
ARVALD Y Y A
ARADDR R1 f R2 { R3 | R4 AR5 )\ R6 )\
RVALID [ [\
RDATA D1 Y D2k 7\ D3\ D4 X7 ) D5
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Performance Considerations

« Burst mode for sequential memory access
CLK
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ARADDR
ARLEN
RVALID
RDATA
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 Burst-coalesced LSUs
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Performance Considerations

* Initiation Interval (1l)
— Number of clock cycles between the start times of consecutive loop iterations
— Crucial for loop pipelining in terms of performance
— Il =1 for optimal loop pipelining
Pipelined Loop with Il = 1 Pipelined Loop with i = 3

i0

* Undesired loop performance

i0
il
12
i3
— Loop-carried Dependencies
— Conflicted Resource Access

Clock Cycles
Clock Cycles

i2

— Pipeline Stall
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Performance Considerations

* Nested Loops

Unroll
Flatten
Loop Coalescing

Nested Pipelining

 Trade-off between resource
usage and performance
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_ Stalled until the inner loop has finished

its computations.

Thread 2 can continue to pipeline through

= outer loop and stall in the next cydle until

thread 11s done.

... Thread 9 enters into outer loop on

yde13.



Performance Considerations

* Even more precise controls achievable by embedding RTL modules

— Keep in mind of underlying structure when designing circuits
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Performance Considerations

 Where to insert registers?

DSP slice — Xilinx® UltraScale™

/ O
60—

27 x 18 4

Multiplier

48-Bit Accumulator/Logic Unit

» XOR

Pattern
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Pattern Detector

« How to fully utilize the 27x18 multipliers available?
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Future Work

« Enabling FlashTVM for more Deep Learning Networks

— Instruction Set Extensions to support more ops in VTA

— New framework features required by more complicated models (e.g. Dynamic Shape)

 Further Performance Enhancement

— Schedule enhancement for graph computation
— Multi-core parallelism for better resource utilization

— Explore new hardware features available (e.g. HBM2, UPI, DCPMM, etc.)
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Q&A

* Any Questions?
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Thank You!

contact@4paradigm.com 010-8278-0800

pr@4paradigm.com



