FlashTVM

4i3aradigm

"l FOEN

Background

TVM is an open deep learning compiler stack for CPUs, GPUs, and

specialized accelerators.

— Compilation of deep learning models Iin
; i '*"4';‘,}\" ’7) Optimization
Tensorflow, Keras, PyTorch, etc, into O®F @ @ ?

minimum deployable modules.

_ Infrastructure to automatlca”y genera‘te Tensor Expression and Optimization Search Space
and optimize tensor operators on diverse
backends Wl.th optimized performance. ke Ege Clow

— VTA: Versatile Tensor Accelerator

AutoTVM

ASIC Device Fleet

4Paradigm copyright ©2020 4Paradigm All Rights Reserved.

Source: https://tvm.apache.org/

Background

e Auto-tune
— Determine schedules: Split, tile, fuse, re-order, etc. . outchannels
— Search the best schedules available for different EI
OPs.

— Search Algorithms: Random, grid search, XGBTuner.

in_channels

in_channels

* Tuning Process . }

— Retrieve specific workload according to network | Wl _____________ ____________ EI?
structures. (e.g. conv2d(14, 14, 32, 32)) o o

— Profiling trail-runs on actual hardware, determining

the best schedule available | data(b_out, ic_out) res(b_out, oc_out)

batch

4Paradigm copyright ©2020 4Paradigm All Rights Reserved.
Source: https://tvm.apache.org/

FlashTVM

* Architecture

Applications

Compiler

Hardware
Abstraction

Accelerators Datacenter FPGAs

4Paradigm copyright ©2020 4Paradigm All Rights Reserved.

Framework Enhancements

* The Current VTA only works on edge SoC FPGA Devices

— Based on Shared-Memory Model
- Shared DDR memory via internal bus
— Most datacenter FPGA accelerations cards are PCle cards
- Memory access via PCle Link
- High communication cost
- Need to minimize data exchange

conv2d
DFS order
maxpool

CPU

* Heterogeneous Co-processing Framework Cony2
— IR pass: annotate device types (on_device)

— Enhanced IR pass: Tag and propagate device types

— IR pass: Perform device_copy automatically

— Pointer type support

4Paradigm copyright ©2020 4Paradigm All Rights Reserved.

Versatile Tensor Accelerator

* We refactored the codes to conform to OpenCL standard

— The original Xilinx HLS VTA core only works on Xilinx Edge FPGA devices
— Why OpenCL?

» Support from both Xilinx and Intel

* Proven portability and scalability
— For both official and custom boards

» Vendor-specific optimizations are built-in within
their respective official SDKs

4Paradigm copyright ©2020 4Paradigm All Rights Reserved.

HDL or HLS?

 Emphasize on official toolchain support?

— FPGA Devices are not blank canvases
- Pre-defined logic cells, memories, DSP slices, etc.

- Different from vendor to vendor, from generation to generation, and even from product family

to family.
— To build FPGA applications of high performance Local Memory
- Design our circuit based on underlying elements a0
J ying Replicate 0
— “Double Pumping” of BlockRAM Read port 0
< L
- Number of available physical ports < Read port 1 M20K
Available on Arria 10 but not Stratix 10 oRead port
- Available o ia ut not Stratix Write port X (LK
(LK

4Paradigm copyright ©2020 4Paradigm All Rights Reserved. Imem

FlashTVM

e Some operations are not supported on existing VTA core

— Get rid of CPU-assisted calculations

— Additional instructions for continuous calculations on FPGA

« As we have more resources available on datacenter FPGAsS
— The original HLS VTA coding can scale up

— Performance degradations observed!

— Little improvement over the original design

4Paradigm copyright ©2020 4Paradigm All Rights Reserved.

Performance Considerations

« External memory bandwidth
— Hardware Capability (number of DDR channels, HBM, etc.)

— Memory Access Efficiency

ARVALID [\ [\ [
ARADDR é(m}éi% A R2 A R3 |
RVALID 1 [\ [\
RDATA 7% D1 ¥ D2 ¥
ot I A
ARVALD Y Y A
ARADDR R1 f R2 { R3 | R4 AR5)\ R6)\
RVALID [[\
RDATA D1 Y D2k 7\ D3\ D4 X7) D5

4Paradigm copyright ©2020 4Paradigm All Rights Reserved.

Performance Considerations

« Burst mode for sequential memory access
CLK

ARVALID
ARADDR
ARLEN
RVALID
RDATA

[\ [\

RN 2 &Y,

VR 743 ¥
/ \ /[
} D1 X D2) D3)Y D4} X D5

CLK

ARVALID
ARADDR
ARLEN
RVALID
RDATA

/ \

X R1 f R5 J R9 JR13)

X3 A3 k3 A3 N

/ / J

7} D1} D2 D3)D4) 7 XD5)D6JD7)D8JK"

 Burst-coalesced LSUs

4Paradigm copyright ©2020 4Paradigm All Rights Reserved.

Performance Considerations

* Initiation Interval (1l)
— Number of clock cycles between the start times of consecutive loop iterations
— Crucial for loop pipelining in terms of performance
— Il =1 for optimal loop pipelining
Pipelined Loop with Il = 1 Pipelined Loop with i = 3

i0

* Undesired loop performance

i0
il
12
i3
— Loop-carried Dependencies
— Conflicted Resource Access

Clock Cycles
Clock Cycles

i2

— Pipeline Stall

4Paradigm copyright ©2020 4Paradigm All Rights Reserved.

Performance Considerations

* Nested Loops

Unroll
Flatten
Loop Coalescing

Nested Pipelining

 Trade-off between resource
usage and performance

4Paradigm copyright ©2020 4Paradigm All Rights Reserved.

k size

size

Clock Cydles

W |k | = | =

10

1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

_ Stalled until the inner loop has finished

its computations.

Thread 2 can continue to pipeline through

= outer loop and stall in the next cydle until

thread 11s done.

... Thread 9 enters into outer loop on

yde13.

Performance Considerations

* Even more precise controls achievable by embedding RTL modules

— Keep in mind of underlying structure when designing circuits

scanin

!

chainin

[

loadconst —»

accumulate C—
negate C—>

To
pre-adder

sub —

ay IZF—‘D’

az >

ax —~

coefsela —

Input
Systolic
Register

Top
Dela

Internal

Coefficient

Input Registers

Registe

Pipeline Registers

by ——
bz ==

bx

coefselb —>
dk ———F—

+-

adder

Chainin

[Systolic

chainadder

Double L
Accumulato
Register

Lal

—> resulta

Multiplier

Internal
LA Coefficient

Bottom

ena ———
Delay

adr o—— Register

Output
Register

> resulth

4Paradic

WM =

scanout

DSP slice — Intel® Arria® 10

chainout

> resulta[36:0]

CLK[2.0]
scanin[18.0] chainin[63..0]
< ENA2.0]
———< (LR[1.0]
A B
i
LOADCONST —=>—— H H
accumoLae ——H H H
NEGATE C=>— H H
siB > H
**Systolic :
: **Systolic Constant
Pre-Adder Registers Multiplier Register . . -
o=+ H H
a7 >4 =H s H
-0 HIEIE X
2|
a0 > EH =L =
HIBIE s Har +
OESEAR0) o> EH 2H 2 =
Bl E||2
= . Chainout adder/ m"““hl"’l
urmulation
(el Multiplier and Subtractor e Register
Pre-Adder
byig.0] >+ H H E
+- E
be17.0] > H H x)
o=
w70 > H 4|:D— H
COEFSELB[Z.0) > H H
S Ermnal
T Coefficient
scanout{18.0] DSP slice - Intel® Stratix® 10

chainout[63..0]

> resulth[36:0]

Performance Considerations

 Where to insert registers?

DSP slice — Xilinx® UltraScale™

/ O
60—

27 x 18 4

Multiplier

48-Bit Accumulator/Logic Unit

» XOR

Pattern

B —t»

>
A —1

>

>

D —t»

D’ Pre-adder
cC—t1t™

>

-

H >

Pattern Detector

« How to fully utilize the 27x18 multipliers available?

4Paradigm copyright ©2020 4Paradigm All Rights Reserved.

Detect

Future Work

« Enabling FlashTVM for more Deep Learning Networks

— Instruction Set Extensions to support more ops in VTA

— New framework features required by more complicated models (e.g. Dynamic Shape)

 Further Performance Enhancement

— Schedule enhancement for graph computation
— Multi-core parallelism for better resource utilization

— Explore new hardware features available (e.g. HBM2, UPI, DCPMM, etc.)

4Paradigm copyright ©2020 4Paradigm All Rights Reserved.

References

« Apache (incubating) TVM. https://tvm.apache.org
* [ntel FPGA SDK for OpenCL Pro Edition: Programming Guide
* Vivado Design Suite User Guide: High-Level Synthesis

« Xilinx SDAccel Programmers Guide

Q&A

* Any Questions?

4Paradigm copyright ©2020 4Paradigm All Rights Reserved.

Thank You!

contact@4paradigm.com 010-8278-0800

pr@4paradigm.com

